

SQL Basics

for

myEvolv
Reporting

2

Table of Contents

Relational Databases & Data Normalization 3

myEvolv's Structure 5

Primary & Foreign Keys 6

SQL Syntax
Table & Column Notation 7

SELECT & FROM 7

JOIN 8

AS 10

WHERE 10

Bits and Pieces
IN 11

LIKE 11

ORDER BY 11

Date Format 12

DATEDIFF 12

DATEADD & GETDATE 12

3

Relational Databases and Data Normalization

When a database is described as relational, it has been designed to conform to a set of practices called

the rules of normalization. A normalized database is one that follows the rules of normalization.

For example, in myEvolv, we have clients who are enrolled in various programs. Each client and program

has a number and a name. You could organize this information as shown in Table 1.

Table 1: Sample Client Information

ClntNo ClntName ProgNo ProgName

101 Abigail 10 Residential

102 Bob 20 Foster Care

103 Carolyn 10 Residential

104 Doug 20 Foster Care

105 Evelyn 10 Residential

If you structure your data this way and make certain changes to it, you’ll have problems. For example,

deleting all the clients in the Residential program will eliminate the program itself. If you change the

name of the Foster Care program to “Therapeutic Foster Care,” you would need to change the record of

each client in that program.

4

Using the principles of relational databases, the Client and Program data can be restructured into two

separate tables (CLNT and PROG), as shown in Tables 2 and 3.

Table 2: A Sample Relational PROG Table

ProgNo ProgName

10 Residential

20 Foster Care

Table 3: A Sample Relational CLNT Table

ClntNo CName ProgNo

101 Abigail 10

102 Bob 20

103 Carolyn 10

104 Doug 20

105 Evelyn 10

By using this structure, you can examine the CLNT table to find out that Doug is enrolled in program 20.

Then you can check the PROG table to find out that program 20 is Foster Care. You might think that

Table 1 looks more efficient. However, retrieving the information you need in a number of different

ways is much easier with the two-table structure. Joining the information in the two tables for more

efficient retrieval is exactly the problem that relational databases were designed to solve.

5

myEvolv’s Structure

myEvolv has been designed as an event-based system. All of the things that users add to an individual’s

record are recorded as types of events. What this means for the database is that the Event Log table is

one of the most important tables in the database and will play into most of the queries that you will

write.

If you run a basic query on the event log table

SELECT * FROM event_log

You will notice that many of the columns in the table hold random strings of letters and numbers and

the rest are largely dates. The random-string columns are holding foreign key references to other tables

and there are often a lot of tables to be referenced, even for basic events.

You may recall that when you are using the form designer in myEvolv that you select a form family to

use. Each form family refers to a table in the myEvolv database that holds the data related to those

types of forms. For example, if you are working in the Diagnosis form family, you are able to add fields

from the Event Log table and the Diagnosis table. If you are working in the Activities – People form

family, you are able to add fields from the Event Log table and the Contacts table.

If you add a user-defined field or New Database Field, you are creating it in a related table. So if you are

in the Activities – People form family, your user-defined field is created in the Contacts X table.

You will see this pattern repeated for each form family and you will use it to access your user-defined

fields.

6

Primary Keys and Foreign Keys

Tables are linked through referencing keys that match between two or more tables. Keys are typically

integers or strings and are stored in a table’s primary key column and any foreign key columns. myEvolv

uses a GUID (Globally Unique Identifier) for its keys.

A primary key is assigned to each record/row in a table and it uniquely identifies that record in the

table. For the most part, in a myEvolv table, the primary key column will be named after the table itself.

For example, the Event Log table’s primary key column is event_log_id and the People table’s

primary key is people_id.

A foreign key is the reference to another table’s primary key stored in a table. A table may have no

foreign key columns in it or it may have many. The column will have the primary key of the referenced

table stored in it and in myEvolv, the foreign key column is typically named after the table it references.

For example, the Event Log table has a foreign key column of people_id that references the primary

key column of the People table.

The Event Log table has (at least) two commonly used foreign key columns that do not match the names

of their respective tables. program_providing_service and site_providing_service

refer to the Program Info and Group Profile tables respectively.

In order to determine the table reference for a foreign key, it may be necessary to consult the Data

Dictionary in myEvolv.

7

SQL Syntax

Table & Column Notation

You refer to specific columns in the database using dot (.) notation where you specify the table and

column:

SELECT & FROM

The most basic queries you will write in SQL are simply listing the columns that you would like to

SELECT FROM a specific table.

If you would like all of the columns from a table, you can use the asterisk (*) as a wild card.

These types of queries are limited to getting information from a single table because you cannot stack

the FROM clause with additional tables like you could with the SELECT clause. To add additional tables

to our queries, we must use JOIN.

8

JOIN

JOIN clauses allow you to bring more tables into the query and also to do some filtering on the results

based on which type of JOIN you employ. There are 4 different basic JOINS that you might use. The

most common are the INNER JOIN and the LEFT JOIN.

Image from w3schools.com

The LEFT and RIGHT tables in the descriptions above refer to the first table listed (LEFT) and the

other table being joined to it (RIGHT)

It is important to understand when to use which JOIN in your query since they act as a filter and you do

not want to inadvertently exclude rows in your results. For example, let’s say that you want a list of all

clients and their addresses to use for a mailing. To do this, you must join the address table to the people

table.

If you use an INNER JOIN, the query will only grab records where there is a matching people_id in

both tables.

Your results would look something like this:

9

If you use a LEFT JOIN, the query will return all rows from the people table and fill in address table

columns where there is a match on the people_id. Where there is no match, the values will be

NULL.

Your results would look something like this:

Notice that in this result, we have Colin Cook, Sarah Adams and Lee Washington included in the results

whereas they were not in the INNER JOIN results. That is because the INNER JOIN filtered these

clients out for not having an address record. The LEFT JOIN insured that all people from the people

table are in your result set, regardless of whether they have an address in the system.

When using a JOIN clause in your query, it is accompanied with one or more ON conditions which

defines which columns should be matched but can also be used to do further filtering. For example, you

might use

JOIN address ON address.people_id = people.people_id AND address.zip_code <> '14850'

This JOIN clause will get all people with a matching address record but leave out anyone with a 14850

zip code. It can be useful or even sometimes necessary to do this filtering on your JOINs, but SQL also

includes the WHERE clause to further filter your results.

10

AS

In the example above, both tables have a people_id column and we selected both in our query.

Some report writing programs will handle duplicate column names automatically but others will require

using an alias for the column name so that they can be distinguished. You may also need to give whole

tables an alias when you use the same table multiple times in one query. To give a column or table an

alias, you use the AS keyword:

It can also be useful to use aliases even when they aren’t necessary just to shorten table names when

you will be typing them out a lot. For example, you might want to rename the
budget_capitation_totals_mirror_header_summary_view

to just
budg_cap

when writing your queries.

WHERE

After your JOINs, you can use a WHERE clause in order to filter your result set down to just the records

you want see. As an alternate to the JOIN clause above where we filtered out the 14850 zip codes, we

could have just tacked the following WHERE clause to the end to achieve the same effect:

WHERE address.zip_code <> '14850'

You are only allowed one WHERE clause per query so you have to stack your conditions using AND, OR

and NOT in order to get more complex.

WHERE address.zip_code <> '14850' AND people.last_name <> 'Johnson'

The main challenge with WHERE clauses comes from understanding how to use AND, OR and NOT in

combination with one another.

X AND Y OR Z
is not the same as

X AND (Y OR Z)
is not the same as

(X AND Y) OR Z

11

Bits and Pieces

Here are some other helpful pieces of syntax that you might find helpful in writing queries

IN

If you want to filter for a list of values rather than one and you don’t want to write a long chain of ANDs,
you can use the IN operator and provide a list of values to match against:

WHERE program_info.program_name IN ('Residential', 'Foster Care', 'Substance Abuse')

LIKE

If you know some portion of the value for something, you can use the LIKE keyword and the % and _
characters in your clause as wild cards to find partial matches.

% - The percent sign represents zero, one, or multiple characters

_ - The underscore represents a single character

ORDER BY

The ORDER BY keyword allows you to sort your results by one or more columns. The default is to sort
in ascending order but you can explicitly determine the order with the ASC and DESC keywords.
ORDER BY clauses must go after the WHERE clause.

ORDER BY people.last_name ASC

WHERE program_info.program_name LIKE 'a%' Finds any values that start with "a"

WHERE program_info.program_name LIKE '%a' Finds any values that end with "a"

WHERE program_info.program_name LIKE '%or%' Finds any values that have "or" in any position

WHERE program_info.program_name LIKE '_r%' Finds any values that have "r" in the second position

WHERE program_info.program_name LIKE 'a_%_%'
Finds any values that start with "a" and are at least 3
characters in length

WHERE program_info.program_name LIKE 'a%o' Finds any values that start with "a" and ends with "o"

12

Date Format

myEvolv uses a SQL Server for its database, so dates should be provided in a yyyy-mm-dd format.

DATEDIFF
SQL includes some functions that can be useful when you are trying to fine tune the records you are

looking for. The DATEDIFF function returns the number of the specified interval between two dates.
It can count days, months, years, etc. For example, you may want tocheck contemporaneousness of
documentation by finding services that were entered into myEvolv (event_log.date_entered) more
than 3 days after they were provided (event_log.actual_date):

DATEADD & GETDATE

The DATEADD function adds increments of time to the specified date. This can be useful when you are
trying to do things like find services provided in the last 30 days without hard coding today’s date into
the query. Note also the GETDATE function, which can be used instead of a date and will always equal
the date that the query is being run.

This query will find all people who

were born since January 1, 2018

Syntax:

DATEDIFF(interval, date1, date2)

Syntax:

DATEADD(interval, number, date)

